Fractional Lion Algorithm-An Optimization Algorithm for Data Clustering

نویسندگان

  • Satish Chander
  • P. Vijaya
  • Praveen Dhyani
چکیده

Corresponding Author: Satish Chander Waljat College of Applied Sciences, P.O Box 197, P.C. 124, Rusayl, Muscat, Oman Email: [email protected] Abstract: Clustering divides the data available as bulk into meaningful, useful groups (Clusters) without any prior knowledge about the data. Cluster analysis provides an abstraction from individual data objects to the clusters in which those objects reside. It is a key technique in the data mining and has become an important issue in many fields. This paper presents a novel Fractional Lion Algorithm (FLA) as an optimization methodology for the clustering problems. The proposed algorithm utilizes the lion's unique characteristics such as pride, laggardness exploitation, territorial defence and territorial take over. The Lion algorithm is modified with the fractional theory to search the cluster centroids. The proposed fractional lion algorithm estimates the centroids with the systematic initialization itself. Proposed methodology is a robust one, since the parameters utilized are insensitive and not problem dependent. The performance of the proposed rapid centroid estimation is evaluated using the cluster accuracy, jaccard coefficient and rand coefficient. The quality of this approach is evaluated on the benchmarked iris and wine data sets. On comparing with the particle swarm clustering algorithm, experimental results shows that the clustering accuracy of about 75% is achieved by the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...

متن کامل

An Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCS

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016